Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
J Innate Immun ; 16(1): 226-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527452

RESUMO

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Assuntos
Adenoviridae , Citocinas , Fator Regulador 3 de Interferon , Lipopolissacarídeos , Macrófagos , Camundongos Knockout , Animais , Camundongos , Lipopolissacarídeos/imunologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Macrófagos/imunologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Vetores Genéticos , Infecções por Adenoviridae/imunologia , Interferon Tipo I/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Interferon beta/metabolismo
2.
Eur J Pharmacol ; 968: 176382, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311277

RESUMO

Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1ß, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.


Assuntos
Dermatite , Psoríase , Humanos , Animais , Camundongos , Imiquimode/efeitos adversos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/farmacologia , Lipopolissacarídeos/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Dermatite/patologia , Inflamação/patologia , Células Dendríticas , Transdução de Sinais , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Mol Biol Rep ; 51(1): 114, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227268

RESUMO

BACKGROUND: The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS: A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION: Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.


Assuntos
Fator Regulador 7 de Interferon , Interferon Tipo I , Animais , Humanos , Fator Regulador 7 de Interferon/genética , Tibet , Anuros/genética , Íntrons/genética , Interferon Tipo I/genética
4.
J Biol Chem ; 300(1): 105525, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043800

RESUMO

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.


Assuntos
Imunidade Inata , Fator Regulador 7 de Interferon , Interferon Tipo I , Proteínas Serina-Treonina Quinases , Infecções por Vírus de RNA , Vírus de RNA , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Fibroblastos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Vírus de RNA/imunologia , Infecções por Vírus de RNA/imunologia , Humanos , Células HEK293
5.
J Virol ; 97(10): e0095923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772825

RESUMO

IMPORTANCE: Viral encephalomyelitis outcome is dependent on host responses to neuronal infection. Interferon (IFN) is an important component of the innate response, and IFN regulatory factor (IRF) 7 is an inducible transcription factor for the synthesis of IFN-α. IRF7-deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7 -/- mice produce low levels of IFN-α but high levels of IFN-ß with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7 -/- mice developed inflammation earlier but failed to clear virus from motor neuron-rich regions of the brainstem and spinal cord. Levels of IFN-γ and virus-specific antibody were comparable, indicating that IRF7 deficiency does not impair expression of these known viral clearance factors. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance.


Assuntos
Infecções por Alphavirus , Encefalomielite , Fator Regulador 7 de Interferon , Vírus Sindbis , Animais , Camundongos , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Tronco Encefálico/virologia , Encefalomielite/imunologia , Encefalomielite/virologia , Inflamação/virologia , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/imunologia , Interferon beta/metabolismo , Neurônios Motores/virologia , Vírus Sindbis/imunologia , Medula Espinal/virologia
6.
J Neuroinflammation ; 20(1): 213, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737190

RESUMO

BACKGROUND: Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS: To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS: Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION: IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.


Assuntos
Encefalite Transmitida por Carrapatos , Fator Regulador 7 de Interferon , Interferon Tipo I , Animais , Camundongos , Anticorpos , Astrócitos , Sistema Nervoso Central , Fator Regulador 7 de Interferon/genética , Encefalite Transmitida por Carrapatos/imunologia
7.
Int J Biol Macromol ; 247: 125635, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399879

RESUMO

Interferon regulatory factor 7 (IRF7) regulates type I interferon (IFN) genes via combining to the ISRE region in the immune response against bacteria. Streptococcus iniae is one of the dominant pathogenic bacteria of yellowfin seabream, Acanthopagrus latus. However, the regulatory mechanisms of A. latus IRF7 (AlIRF7) mediated by the type I IFN signalling pathway against S. iniae was ambiguously. In the present study, IRF7, and two IFNa3s (IFNa3 and IFNa3-like) were authenticated from A. latus. The total length of AlIRF7 cDNA is 2142 bp, containing a 1314 bp open reading frame (ORF) encoding an inferred 437 amino acids (aa). Three typical regions, a serine-rich domain (SRD), a DNA-binding domain (DBD), and an IRF association domain (IAD), are conserved in AlIRF7. Furthermore, AlIRF7 is fundamentally expressed in various kinds of organs, with high levels in the spleen and liver. Additionally, S. iniae challenge promoted AlIRF7 expression in the spleen, liver, kidney, and brain. AlIRF7 is confirmed to be located at the nucleus and cytoplasm by overexpression of AlIRF7. Moreover, truncation mutation analyses shows that the regions, -821 bp to +192 bp and -928 bp to +196 bp, were known as core promoters from AlIFNa3 and AlIFNa3-like, respectively. The point mutation analyses and electrophoretic mobile shift assay (EMSA) verified that AlIFNa3 and AlIFNa3-like transcriptions are depended on the M2/5 and M2/3/4 binding sites with AlIRF7 regulation, respectively. Additionally, an overexpression experiment showed that AlIRF7 can dramatically decrease the mRNA levels of two AlIFNa3s and interferon signalling molecules. These results suggest that two IFNa3s may mediate the regulation of AlIRF7 in the immune responses of A. latus against S. iniae infection.


Assuntos
Interferon Tipo I , Perciformes , Dourada , Animais , Fator Regulador 7 de Interferon/genética , Dourada/genética , Regulação da Expressão Gênica , Streptococcus iniae/genética , Proteínas de Peixes/química , Sequência de Bases , Sequência de Aminoácidos , Perciformes/genética , Interferon Tipo I/genética
8.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446070

RESUMO

Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.


Assuntos
Vírus da Raiva , Raiva , Animais , Camundongos , Vírus da Raiva/metabolismo , Raiva/genética , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Replicação Viral
9.
J Biol Chem ; 299(7): 104925, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328105

RESUMO

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Assuntos
Infecções por HIV , Interferon Tipo I , Proteína 1 com Domínio SAM e Domínio HD , Humanos , Células HEK293 , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Infecções por HIV/metabolismo , Transdução de Sinais
10.
Oncoimmunology ; 12(1): 2213132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235066

RESUMO

Among cancer immunotherapy, which has received great attention in recent years, cancer vaccines can potentially prevent recurrent tumors by using the exquisite power and specificity of the immune system. Specifically, whole tumor cell vaccines (WTCVs) based on surgically resected tumors have been considered to elicit robust anti-tumor immune responses by exposing various tumor-associated antigens to host immunity. However, most tumors have little immunogenicity because of immunoediting by continuous interactions with host immunity; thus, preparing WTCVs based on patient-derived non-modified tumors cannot prevent tumor onset. Hence, the immunogenicity of tumor cells must be improved for effective WTCVs. In this study, we indicate the importance of the interferon regulatory factor 7 (Irf7) axis, including Irf7 and its downstream factors, within tumor cells in regulating immunogenicity. Indeed, WTCVs that augmented the Irf7 axis have exerted remarkable recurrence-preventive effects when vaccinated after tumor inactivation by radiation. Most notably, vaccination with murine colon cancer cells that enhanced the Irf7 axis prevented the development of challenged tumors in all mice and resulted in a 100% survival rate during the observation period. Furthermore, the mechanism leading to vaccine effectiveness was mediated by interferon-gamma-producing B cells. This study provides novel insights into how to enhance tumor immunogenicity and use WTCVs as recurrence prophylaxis.


Assuntos
Vacinas Anticâncer , Interferon gama , Animais , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Fator Regulador 7 de Interferon/genética , Vacinas Anticâncer/farmacologia , Antígenos de Neoplasias
11.
Poult Sci ; 102(1): 102291, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402044

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays a vital role in sensing viral DNA in the cytosol, stimulating type I interferon (IFN) production and triggering the innate immune response against DNA virus infection. However, viruses have evolved effective inhibitors to impede this sensing pathway. Chicken anemia virus (CAV), a nonenveloped ssDNA virus, is a ubiquitous pathogen causing great economic losses to the poultry industry globally. CAV infection is reported to downregulate type I IFN induction. However, whether the cGAS-STING signal axis is used by CAV to regulate type I IFN remains unclear. Our results demonstrate that CAV infection significantly elevates the expression of cGAS and STING at the mRNA level, whereas IFN-ß levels are reduced. Furthermore, IFN-ß activation was completely blocked by the structural protein VP1 of CAV in interferon stimulatory DNA (ISD) or STING-stimulated cells. VP1 was further confirmed as an inhibitor by interacting with interferon regulatory factor 7 (IRF7) by binding its C-terminal 143-492 aa region. IRF7 dimerization induced by TANK binding kinase 1 (TBK1) could be inhibited by VP1 in a dose-dependent manner. Together, our study demonstrates that CAV VP1 is an effective inhibitor that interacts with IRF7 and antagonizes cGAS-STING pathway-mediated IFN-ß activation. These findings reveal a new mechanism of immune evasion by CAV.


Assuntos
Vírus da Anemia da Galinha , Interferon Tipo I , Animais , Vírus da Anemia da Galinha/genética , Interferon beta/genética , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Proteínas Virais/genética , Galinhas/genética , Imunidade Inata/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA Viral
12.
EMBO Rep ; 24(1): e55387, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36394357

RESUMO

Interferon regulatory factor (IRF) 3 and IRF7 are master regulators of type I interferon (IFN-I)-dependent antiviral innate immunity. Upon viral infection, a positive feedback loop is formed, wherein IRF7 promotes further induction of IFN-I in the later stage. Thus, it is critical to maintain a suitably low level of IRF7 to avoid the hyperproduction of IFN-I. In this study, we find that early expression of IFN-I-dependent STAT1 promotes the expression of XAF1 and that XAF1 is associated specifically with IRF7 and inhibits the activity of XIAP. XAF1-knockout and XIAP-transgenic mice display resistance to viral infection, and this resistance is accompanied by increases in IFN-I production and IRF7 stability. Mechanistically, we find that the XAF1-XIAP axis controls the activity of KLHL22, an adaptor of the BTB-CUL3-RBX1 E3 ligase complex through a ubiquitin-dependent pathway. CUL3-KLHL22 directly targets IRF7 and catalyzes its K48-linked ubiquitination and proteasomal degradation. These findings reveal unexpected functions of the XAF1-XIAP axis and KLHL22 in the regulation of IRF7 stability and highlight an important target for antiviral innate immunity.


Assuntos
Interferon Tipo I , Viroses , Camundongos , Animais , Viroses/genética , Antivirais , Imunidade Inata , Ubiquitinação , Fator Regulador 7 de Interferon/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose
13.
Biomol Biomed ; 23(3): 437-449, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336986

RESUMO

Ferroptosis is implicated in the progression of ulcerative colitis (UC), and interferon regulatory factor 7 (IRF7) contributes to cell death. This study probed the mechanism of IRF7 in ferroptosis of colonic epithelial cells (ECs) in mice with dextran sodium sulfate (DSS)-induced UC. The UC mouse model and the in vitro ferroptosis model were respectively established by DSS feeding and the treatment with FIN56 (a ferroptosis inducer). Results of quantitative real-time polymerase chain reaction and western blotting revealed the upregulation of IRF7 and solute carrier family 11 member 2 (SLC11A2/NRAMP2/DMT1) and the downregulation of microRNA (miR)-375-3p in DSS-treated mice and FIN56-treated ECs. Silencing of IRF7 improved the symptoms of UC in DSS-induced mice and decreased the levels of tumor necrosis factor α, interleukin 6, monocyte chemoattractant protein 1, and interleukin 1ß, reactive oxygen species, iron ions, lipid peroxidation, and increased glutathione and glutathione peroxidase 4. Chromatin immunoprecipitation and dual-luciferase assays showed that binding of IRF7 to the miR-375-3p promoter inhibited miR-375-3p expression, and miR-375-3p suppressed SLC11A2 transcription. The rescue experiments revealed that knockdown of miR-375-3p neutralized the role of silencing IRF7 in alleviating ferroptosis of colonic ECs. Overall, IRF7 upregulated SLC11A2 transcription by inhibiting miR-375-3p expression, thereby prompting ferroptosis of colonic ECs and UC progression in DSS-treated mice.


Assuntos
Colite Ulcerativa , Ferroptose , MicroRNAs , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Ferroptose/genética , Fator Regulador 7 de Interferon/genética , MicroRNAs/genética , Células Epiteliais/metabolismo
14.
J Virol ; 97(1): e0178522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511697

RESUMO

Type I interferon (IFN) response is the first line of host-based innate immune defense against viral infections. However, viruses have developed multiple strategies to counter host IFN responses, so they may continue infecting hosts via effective replication. Avian reovirus (ARV), an RNA virus, causes viral arthritis or tenosynovitis in chickens. Previous studies have shown that ARV is highly resistant to the antiviral effects of IFN. However, the underlying mechanisms that enable ARV to block the IFN pathway remain unclear. In this study, we found that ectopic expression of ARV protein, σA, significantly inhibited the production of IFN-ß induced by melanoma-differentiation-associated gene 5 (MDA5) and poly(I·C). Knockdown of σA during ARV infection enhances the IFN-ß response and suppresses viral replication. ARV σA inhibited the MDA5-mediated IFN-ß activation by targeting interferon regulatory factor 7 (IRF7). Further studies demonstrated that σA interacts with IRF7, thereby blocking IRF7 dimerization and nuclear translocation, finally leading to the inhibition of IFN-ß production. These findings reveal a novel mechanism that allows ARV to evade host antiviral immunity. IMPORTANCE ARV, the causative agent of viral arthritis or tenosynovitis in chickens, has a significant economic impact as it results in poor weight gain and increased feed conversion ratios. The MDA5-mediated IFN-ß signal pathway plays an important role in host antiviral defense. Therefore, RNA viruses have developed mechanisms to counter this signaling pathway and successfully establish infection. However, the strategies adopted by ARV to block MDA5-IRF7 signaling remain unclear. In the current study, we demonstrated that ARV σA inhibits this pathway by binding to IRF7, which blocked IRF7 dimerization and nuclear translocation. Our findings may provide insights into how avian reovirus counteracts the innate antiviral immunity of the host to ensure viral replication.


Assuntos
Fator Regulador 7 de Interferon , Interferon Tipo I , Orthoreovirus Aviário , Tenossinovite , Proteínas do Core Viral , Animais , Linhagem Celular , Galinhas/virologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Orthoreovirus Aviário/fisiologia , Tenossinovite/veterinária , Tenossinovite/virologia , Proteínas do Core Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
J Virol ; 96(24): e0157822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448809

RESUMO

Cyclic GMP-AMP synthase (cGAS), a key DNA sensor, detects cytosolic viral DNA and activates the adaptor protein stimulator of interferon genes (STING) to initiate interferon (IFN) production and host innate antiviral responses. Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality in waterfowl. In the present study, we found that DEV inhibits host innate immune responses during the late phase of viral infection. Furthermore, we screened DEV proteins for their ability to inhibit the cGAS-STING DNA-sensing pathway and identified multiple viral proteins, including UL41, US3, UL28, UL53, and UL24, which block IFN-ß activation through this pathway. The DEV tegument protein UL41, which exhibited the strongest inhibitory effect, selectively downregulated the expression of interferon regulatory factor 7 (IRF7) by reducing its mRNA accumulation, thereby inhibiting the DNA-sensing pathway. Ectopic expression of UL41 markedly reduced viral DNA-triggered IFN-ß production and promoted viral replication, whereas deficiency of UL41 in the context of DEV infection increased the IFN-ß response to DEV and suppressed viral replication. In addition, ectopic expression of IRF7 inhibited the replication of the UL41-deficient virus, whereas IRF7 knockdown facilitated its replication. This study is the first report identifying multiple viral proteins encoded by a duck DNA virus, which inhibit the cGAS-STING DNA-sensing pathway. These findings expand our knowledge of DNA sensing in ducks and reveal a mechanism through which DEV antagonizes the host innate immune response. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication of many DNA viruses. However, the mechanisms used by DEV to modulate the DNA-sensing pathway remain poorly understood. In the present study, we found that DEV encodes multiple viral proteins to inhibit the cGAS-STING DNA-sensing pathway. The DEV tegument protein UL41 selectively diminished the accumulation of interferon regulatory factor 7 (IRF7) mRNA, thereby inhibiting the DNA-sensing pathway. Loss of UL41 potently enhanced the IFN-ß response to DEV and impaired viral replication in ducks. These findings provide insights into the host-virus interaction during DEV infection and help develop new live attenuated vaccines against DEV.


Assuntos
Alphaherpesvirinae , Patos , Imunidade Inata , Nucleotidiltransferases , Proteínas Virais , Animais , DNA Viral/genética , DNA Viral/metabolismo , Enterite/imunologia , Enterite/virologia , Imunidade Inata/genética , Fator Regulador 7 de Interferon/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Evasão da Resposta Imune/genética , Alphaherpesvirinae/genética , Alphaherpesvirinae/imunologia
16.
Viruses ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366509

RESUMO

Influenza A virus (IAV) is a globally distributed zoonotic pathogen and causes a highly infectious respiratory disease with high morbidity and mortality in humans and animals. IAV has evolved various strategies to counteract the innate immune response, using different viral proteins. However, the mechanisms are not fully elucidated. In this study, we demonstrated that the nonstructural protein 2 (NS2) of H1N1 IAV negatively regulate the induction of type-I interferon. Co-immunoprecipitation experiments revealed that NS2 specifically interacts with interferon regulatory factor 7 (IRF7). NS2 blocks the nuclear translocation of IRF7 by inhibiting the formation of IRF7 dimers, thereby prevents the activation of IRF7 and inhibits the production of interferon-beta. Taken together, these findings revealed a novel mechanism by which the NS2 of H1N1 IAV inhibits IRF7-mediated type-I interferon production.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Interferon Tipo I , Humanos , Animais , Vírus da Influenza A/fisiologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas não Estruturais Virais/metabolismo
17.
Int J Med Microbiol ; 312(7): 151569, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36274382

RESUMO

Tuberculosis (TB) induced by Mycobacterium tuberculosis (M. tuberculosis) infection remains a global most deadly infectious disease. While development of more effective TB vaccines and therapeutics relies on identifications of true biomarkers designating an immune protection against M. tuberculosis infection, exact protective immune components against M. tuberculosis infection remain largely unidentified. We previously found that severe TB induced remarkable up-regulation of interferon regulatory factor 7 (IRF7) and IRF7-related gene signatures, implicating that some unknown downstream molecules in IRF7 signaling cascades may determine the M. tuberculosis infection outcomes and serve as a protective immune component against M. tuberculosis infection. Indeed, here, we observe that genetic ablation of IRF7 leads to more severe lung pathology, increased M. tuberculosis burdens, impaired differentiation of effector/memory T subsets, and extensively elevated expression of pro-inflammatory cytokines in lungs. Importantly, IRF7 is vital for sustaining expression of PD-1/PD-L1 and PD-1/PD-L1-modulated miRNA-31. Moreover, interventions of miRNA-31 expressions via administration of miRNA-31 agomir reduces lung pathology and bacilli burdens via inducing up-regulation of gene sets involved in biological processes of defense response or cellular and chemical homeostasis in lungs. Thus, this study uncovers previously unrecognized importance and mechanisms of IRF7-mediated miRNA-31 as a protective immune component against M. tuberculosis infection.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Humanos , Antígeno B7-H1 , Fator Regulador 7 de Interferon/genética , Receptor de Morte Celular Programada 1 , Tuberculose/microbiologia , MicroRNAs/genética
18.
J Virol ; 96(18): e0093022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069544

RESUMO

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.


Assuntos
Infecções por Flavivirus , Flavivirus , Interações entre Hospedeiro e Microrganismos , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Endopeptidases/genética , Endopeptidases/metabolismo , Retroalimentação Fisiológica , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima
19.
FASEB J ; 36(8): e22409, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792897

RESUMO

Interferon regulatory factor 7 (IRF7), as the interferon-stimulated gene, maximally drives type I interferon (IFN) production. However, the mechanisms by which the biological function of IRF7 is regulated remain elusive. In this study, we found that IRF7 selectively interacted with the neuralized E3 ubiquitin-protein ligase 3 (NEURL3). In concomitant with IRF7 induction, NEURL3 is upregulated by NF-κB signaling in the late phase of viral infection. Moreover, NEURL3 augmented the host antiviral immune response through ubiquitinating IRF7. A mechanistic study revealed that NEURL3 triggered K63-linked poly-ubiquitination on IRF7 lysine 375, which in turn epigenetically enhanced the transcription of interferon-stimulated genes (ISGs) through disruption of the association of IRF7 with Histone Deacetylase 1 (HDAC1), consequently augmenting host antiviral immune response. Accordingly, Neurl3-/- mice produced less type I IFNs and exhibited increased susceptibility to viral infection. Taken together, our findings identify NEURL3 as an E3 ubiquitin ligase of IRF7 and shed new light on the positive regulation of IRF7 in host antiviral immune signaling.


Assuntos
Interferon Tipo I , Ubiquitina-Proteína Ligases/metabolismo , Viroses , Animais , Antivirais/farmacologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/genética , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Nat Immunol ; 23(8): 1193-1207, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879450

RESUMO

Innate antiviral immunity deteriorates with aging but how this occurs is not entirely clear. Here we identified SIRT1-mediated DNA-binding domain (DBD) deacetylation as a critical step for IRF3/7 activation that is inhibited during aging. Viral-stimulated IRF3 underwent liquid-liquid phase separation (LLPS) with interferon (IFN)-stimulated response element DNA and compartmentalized IRF7 in the nucleus, thereby stimulating type I IFN (IFN-I) expression. SIRT1 deficiency resulted in IRF3/IRF7 hyperacetylation in the DBD, which inhibited LLPS and innate immunity, resulting in increased viral load and mortality in mice. By developing a genetic code expansion orthogonal system, we demonstrated the presence of an acetyl moiety at specific IRF3/IRF7 DBD site/s abolish IRF3/IRF7 LLPS and IFN-I induction. SIRT1 agonists rescued SIRT1 activity in aged mice, restored IFN signaling and thus antagonized viral replication. These findings not only identify a mechanism by which SIRT1 regulates IFN production by affecting IRF3/IRF7 LLPS, but also provide information on the drivers of innate immunosenescence.


Assuntos
Antivirais , Sirtuína 1 , Animais , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...